Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301

e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

No.AC2(S)/151/2020-21

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 01.09.2023

Notification

Sub:- Syllabus and Scheme of Examinations of Microbiology (UG) (V & VI Semester) with effect from the Academic year 2023-24.

Ref:- 1. This office letter No: AC6/303/2022-23 dated: 28-07-2023.

2. Decision of BOS in Microbiology (UG) meeting held on 05-08-2023. *****

The Board of Studies in Microbiology (UG) which met on 05-08-2023 has resolved to recommended and approved the syllabus and scheme of Examinations of Microbiology programme (V & VI Semester) with effect from the Academic year 2023-24.

Pending approval of the Faculty of Science & Technology and Academic Council meetings the above said syllabus and scheme of examinations are hereby notified.

The syllabus and scheme of Examinations contents may be downloaded from the University website i.e., www.uni-mysore.ac.in.

To:-

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS, in Microbiology, Manasagangothri, Mysore.
- 4. The Director. Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 5. The Director, PMEB, Manasagangothri, Mysore.
- 6. Director, College Development Council, Manasagangothri, Mysore.
- 7. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 8. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 9. Office Copy.

UNIVERSITY OF MYSORE

Curriculum Framework for Undergraduate Programme in Colleges at University of Mysore, Mysuru

NATIONAL EDUCATION POLICY 2021

5th and 6th Semester Model Syllabus for B. Sc. in Microbiology

Board of Studies in Microbiology Department of Studies in Microbiology University of Mysore Manasagangotri, Mysuru 570 006

2023-24 onwards

B. Sc.: Curriculum and Credit Framework for Undergraduate Programme

Sem.	Discipline Specific	Minor/	Ability		ses (SEC) (Credits) (L+T+P)/	Total
	Courses	Multidisciplinary/Open	Enhancement	•	edits) (L+T+P) (common for	Credits
	- Core (DSC), Elective	Elective (OE)	Courses (AEC)	all UG Programs)/	Summer Internship.	
	(DSE)(Credits) (L+T+P)	Courses(Credits)	(Credits)(L+T+P)			
		(L+T+P)	(Languages)			
I	DSC-A1(4), A2(2)	OE-1 (3)	L1-1(3), L2-1(3)	SEC-1: Digital Fluency	Health, Wellness & Yoga (2)	25/26
	DSC-B1(4), B2(2)		(4 hrs each)	(2) (1+0+2)/	(1+0+2)	
				Env. Studies (3)		
П	DSC-A3(4), A4(2),	OE-2 (3)	L1-2(3), L2-2(3)	Env. Studies (3)/ SEC-1:	Sports/NCC/NSS/R&R(S&G) /	26/25
	DSC-B3(4), B4(2)		(4 hrs each)	Digital Fluency (2)(1+0+2)	Cultural (2) (0+0+4)	
Stud	lents exiting the program	me after securing 46 credits	s will be awarded UG	Certificate in Disciplines A an	d B provided they secure 4 cre	dits in
work	based vocational courses	during summer term or inte	rnship/Apprenticesh	ip in addition to 6 credits fron	n skill-based courses earned du	uring the
			first year.			
III	DSC-A5(4), A6(2),	OE-3 (3)/ India and Indian	L1-3(3), L2-3(3)	SEC-2:AI/CyberSecurity/Finan-	Sports/NCC/NSS/R&R(S&G)	25
	DSC-B5(4), B6(2)	Constitution (3)	(4 hrs. each)	c ial Edu. & Inv. Aw. (2)	/Cultural (2) (0+0+4)/ SEC(2)	
				(1+0+2)		
IV	DSC-A7(4), A8(2),	India and Indian	L1-4(3), L2-4(3)	SEC-3: Financial Edu. &Inv.	Sports/NCC/NSS/R&R(S&G)	25
	DSC-A7(4), A8(2), DSC-B7(4), B8(2)	India and Indian Constitution (3) / OE-3(3)	L1-4(3), L2-4(3) (4 hrs. each)	SEC-3 : Financial Edu. &Inv. Aw. /AI /Cyber Security (2)	Sports/NCC/NSS/R&R(S&G) / Cultural (2) (0+0+4)/ SEC (2)	25
						25
	DSC-B7(4), B8(2)	Constitution (3) / OE-3(3)	(4 hrs. each)	Aw. /AI /Cyber Security (2) (1+0+2)	/ Cultural (2) (0+0+4)/ SEC (2)	
	DSC-B7(4), B8(2)	Constitution (3) / OE-3(3) nme after securing 92 credit	(4 hrs. each)	Aw. /AI /Cyber Security (2) (1+0+2) 6 Diploma in Disciplines A and	/ Cultural (2) (0+0+4)/ SEC (2) B provided they secure addit	
Stu	DSC-B7(4), B8(2) Idents exiting the program	Constitution (3) / OE-3(3) nme after securing 92 credit dits in skill based vocationa	(4 hrs. each)	Aw. /AI /Cyber Security (2) (1+0+2) Diploma in Disciplines A and ing first- or second-year sum	/ Cultural (2) (0+0+4)/ SEC (2) B provided they secure addit	
Stu V	DSC-B7(4), B8(2) Idents exiting the program cre DSC-A9(4), A10(2),	Constitution (3) / OE-3(3) nme after securing 92 credit dits in skill based vocationa DSC-B9(4), B10(2),	(4 hrs. each)	Aw. /AI /Cyber Security (2) (1+0+2) a Diploma in Disciplines A and ing first- or second-year sum SEC-4: Employability	/ Cultural (2) (0+0+4)/ SEC (2) B provided they secure addit	ional 4
Stu V	DSC-B7(4), B8(2) Idents exiting the program	Constitution (3) / OE-3(3) nme after securing 92 credit dits in skill based vocationa	(4 hrs. each)	Aw. /AI /Cyber Security (2) (1+0+2) Diploma in Disciplines A and ing first- or second-year sum	/ Cultural (2) (0+0+4)/ SEC (2) B provided they secure addit	ional 4
Stu V	DSC-B7(4), B8(2) Idents exiting the program cre DSC-A9(4), A10(2),	Constitution (3) / OE-3(3) nme after securing 92 credit dits in skill based vocationa DSC-B9(4), B10(2),	(4 hrs. each)	Aw. /AI /Cyber Security (2) (1+0+2) Diploma in Disciplines A and ing first- or second-year sum SEC-4: Employability Skills/Cyber Security (3)	/ Cultural (2) (0+0+4)/ SEC (2) B provided they secure addit	ional 4

Sem.	Course	Course	Course Course Title	Credits	Instructional hours per week		Duration of		Exam/ Evaluation Pattern (Marks)	
No.	Category	Code		Assigned	Theory	Practical	Exam (Hrs.)	IA	Exam	Total
I	DSC	DSC-1T	General Microbiology	4	4		2 ¹ / ₂	40	60	100
		DSC-2P	General Microbiology	2		4	3	25	25	50
	OEC	OE-1T	Microbial Technology for Human Welfare	3	3		$2^{1}/_{2}$	40	60	100
П	DSC	DSC-3T	Microbial Biochemistry and Physiology	4	4		$2^{1}/_{2}$	40	60	100
		DSC-4P	Microbial Biochemistry and Physiology	2		4	3	25	25	50
	OEC	OE-2T	Environmental and Sanitary Microbiology	3	3		2 ¹ / ₂	40	60	100
	DSC	DSC-5T	Microbial diversity	4	4		$2^{1}/_{2}$	40	60	100
		DSC-6P	Microbial diversity	2		4	3	25	25	50
	OEC	OE-3T	Microbial Entrepreneurship 3		3		$2^{1}/_{2}$	40	60	100
IV	DSC	DSC-7T	Microbial Enzymology and Metabolism	4	4		$2^{1}/_{2}$	40	60	100
		DSC-8T	Microbial Enzymology and Metabolism	2		4	3	25	25	50
	OEC	OE-4T	Iuman Microbiome 2		2		$2^{1}/_{2}$	20	30	50
V	DSC	DSC-9T	Alicrobial Genetics 4		4		2 ¹ / ₂	40	60	100
		DSC-10P	Microbial Genetics	2		4	3	25	25	50
		DSC-11T	Food Microbiology	4	4		2 ¹ / ₂	40	60	100
		DSC-12P	Food Microbiology	2		4	3	25	25	50
	SEC	SEC-4T	Microbial and Biochemical Techniques	2	2		$2^{1}/_{2}$	20	30	50
		SEC-5P	Microbial and Biochemical Techniques	1		2	3	25	25	50
VI	DSC	DSC-13T	Immunology and Medical Microbiology	4	4		$2^{1}/_{2}$	40	60	100
		DSC-14P	Immunology and Medical Microbiology	2		4	3	25	25	50
		DSC-15T	Industrial Microbiology	4	4		$2^{1}/_{2}$	40	60	100
		DSC-16P	Industrial Microbiology	2		4	3	25	25	50
	Internship	DSC-	Internship	2	3-4 v	veeks (Repor	t & Viva)	25	25	50

List of Courses from I to VI Semesters for Undergraduate Program in MICROBIOLOGY

B. Sc. Microbiology 5th Semester

Program name	B. Sc. in MICROBIOLOGY Se			Semester	V
Course Title	MICROBIAL GENETICS (Theory)				
Course Code	DSC-9T		No. of Credits		04
Contact Hours	60 (4 Hrs. per	week)	Duration of SE	A/Exam (Hrs.)	2 ¹ / ₂
Formative Assessment Marks		40	Summative As	sessment Marks	60

Course Outcomes (COs):

After the successful completion of the course, the student will be able to;

CO1. Understand the experimental evidences to prove DNA as genetic material.

CO2. Differentiate various method of recombination in bacteria.

CO3. Compare gene interaction in viruses and fungi.

CO4. Understand concepts involved in replication, transcription, translation in bacteria.

CO5. Outline regulatory mechanisms in bacteria to control cellular processes

Content of Course 5: Theory: Microbial Genetics	60 Hrs.		
Unit 1 : DNA as genetic material and Bacterial genetics	15 Hrs.		
DNA as a genetic material: Griffith experiment of Transformation, Avery, MacL	eod and		
McCarty experiment, Hershey and Chase experiment to prove DNA carries the	genetic		
information. Fraenkel-Conrat experiment to prove RNA as genetic material. Struct	ture and		
organization of chromosomes in prokaryotes. Plasmid-types, Transposons in Prok	aryotes.		
Bacterial genetics: Mechanism of genetic exchange in bacteria: Bacterial transfor	mation-		
Principle and Types of transformation mechanisms found in prokaryotes. I	Bacterial		
Conjugation: U-tube experiment, properties of the F plasmid, $F^+ x F^-$ conjugation	<i>ו</i> , F′ x F⁻		
conjugation, Hfr x F ⁻ conjugation, Transduction: Generalized and specialized trans	duction.		
Unit 2: Genetic Material and Replication and Transcription of DNA	15 Hrs.		
Genetic Material: Chemical basis of heredity, Watson and Crick model of DN	JA, DNA		
types, RNA-types, structure, importance. Modern concept of gene-cistron, muton	, recon.		
DNA Replication: Replicon, Enzymes and proteins involved in DNA replication	on; DNA		
polymerases, DNA ligase, primase, telomerase. General mechanism of rep	lication.		
Models of DNA replication including rolling circle, Θ (theta) mode of replication.			
Transcription: Structure of bacterial RNA polymerase, Promoter concept, Recognition	nition of		
promoters and DNA melting, Transcription bubble, Stages of transcription- i	nitiation		
elongation and termination. Transcriptional attenuation			
Unit 3: Gene expression and Regulation 15 Hrs.			
Gene expression: Genetic code- features, Wobble hypothesis. Translational ma	chinery,		
Charging of tRNA, aminoacyl tRNA synthetases, Mechanisms of initiation, elonga	tion and		
termination of polypeptides in prokaryotes. Post translational modifications of p	proteins.		
Protein maturation and secretion- protein splicing, molecular chaperones.			

Gene regulation: Regulatory mechanisms in bacteria. Operon concept, polycistronic mRNA. *lac* operon - negative inducible, allolactose, structure of *lac* repressor, mechanism of binding of repressor to operator. Catabolite repression of *lac* operon. Regulation by lac repressor and CAP. *trp* operon regulation – repressor control and attenuator control.

Unit 4: Genetics of Viruses and Fungi and Mutation

15 Hrs.

Genetics of Viruses: Genetic recombination in phages, Heterozygosity in phages. Temperate phage and prophage, Non-genetic interaction of viral gene products-Complementation, Phenotypic mixing, Genotypic mixing and interference.

Genetics of Fungi: Life cycle of *Neurospora*, Terad analysis, unordered tetrad analysis in yeast, ordered tetrad analysis in *Neurospora*, two point and three point test cross.

Mutation: Nature and types, Mutagenic agents: physical and chemical mutagens, damage and repair of DNA: Photoreactivation and SOS repair, Ames test.

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessment for Theory					
Assessment Occasion/ type	Marks				
Attendance	10				
Seminar	10				
Debate/Quiz/Assignment	10				
Class test	10				
Total	Total 40				
Formative Assessment as per guidelines are compulsory					

Practical: Microbial Genetics

Course Title		MICROBIAL GENETICS (Practical)				
Course Code	DSC-10P		No. of Credits	02		
Contact Hours	60 (4 Hrs. per session)		Duration of SEA/Exam (Hrs.)	03		
Formative Assessment Marks		25	Summative Assessment Marks	25		

Practical Content

- 1. Micropipeting: Moving very small volumes very accurately.
- 2. Isolation of DNA from microbial source.
- 3. Estimation of DNA by Diphenylamine method.
- 4. Isolation of coliphages from sewage.
- 5. Isolation of antibiotic resistant mutant by gradient plate method.
- 6. Demonstration of Ames test.
- 7. Preparation of master and replica plates.
- 8. Study survival curve of bacteria after exposure to ultraviolet (UV) light.
- 9. Preparation of competent cells for bacterial transformation.
- 10. Demonstration of bacterial conjugation by plate mating method.
- 11. Determination of purity of DNA.
- 12. Visualization of genomic DNA by agarose gel electrophoresis.
- 13. β-galactosidase activity assay in Yeast.
- 14. Resolution and visualization of proteins by Polyacrylamide Gel Electrophoresis (SDS-PAGE).
- 15. Study of Griffith's experiment, conjugation, transduction, plasmid DNA, T4 phage, ordered tetrad analysis in *Neurospora*, Watson and Crick model of DNA, tRNA, semi-conservative replication of DNA, bacterial RNA polymerase, transcription, translation and *lac* operon through micrographs/schematic representations

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessm	Formative Assessment for Practical					
Assessment Occasion/ type	Marks					
Class Records	05					
Test	10					
Attendance	05					
Performance	05					
Total	Total 25					
Formative Assessment as per	Formative Assessment as per guidelines are compulsory					

- 1. Maloy et al., 1994. Microbial Genetics by Jones and Bartlett Publishers.
- 2. J. W. Dale, 1994. Molecular Genetics of Bacteria by John Wiley and Sons.
- 3. Streips and Yasbin, 1991. Modern Microbial Genetics by Niley Ltd.
- J. D. Watson, N. H. Hoppkins, J. W. Roberts, J. A. Steitz and A. M. Weiner. 1987. Molecular Biology of the Gene 4th Edition by, Benjamin / Cummings Publications Co. Inc. California.
- 5. Lewin, 2000. Gene VII by Oxford University Press.
- 6. Bacterial and Bacteriophage Genetics. 4th Editions by Birge.
- 7. Microbial Genetics by Frefielder. 4th Edition.
- 8. Organization of Prokayotic Genome. 1999 by Robert L.Charlebois, ASM Publications.
- 9. Molecular Genetics of Bacteria, 1997 by Larry, Snyder and Wendy, Champness, ASM
- 10. James, D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick. Molecular Biology of the Gene, 7th edition. 2017
- 11. Freifelder's Essentials of Molecular Biology. George M Malacinski, 4th ed. 2015
- 12. Alberts Bruce, Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2014). Molecular Biology of the Cell. 5th Edition, Taylor and Francis. New York, USA.
- 13. Tropp, B. E. (2012) Molecular Biology: Genes to Proteins. 4rd Edition, Jones & Bartlett, Learning, Burlington, MA
- 14. Allison A. Elizabeth (2012) Fundamental Molecular Biology, 2nd Edition. J Willey and Sons, Hoboken, New Jersey
- Frederick, M., Ausubel, Roger Brent, Robert, E., Kingston, David, D., Moore, J. G. Seidman, John A.Smith, Kevin Struhl (2003). Current Protocols in Molecular Biology. John Wiley & Sons, New York, United States.
- 16. Sambrook, J. F. and Russell, D. W. (2001). Molecular Cloning: a Laboratory Manual. 3rd edition. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press
- Yılmaz, M., Ozic, C., Gok, İ. (2012). Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis. Gel Electrophoresis - Principles and Basics, Dr. Magdeldin S (Ed.), ISBN: 978-953-51-0458-2, InTech.

B. Sc. Microbiology 5th Semester

Program name	B. Sc. in MICROBIOLOGY Ser			Semester	V
Course Title	FOOD MICROBIOLOGY (Theory)				
Course Code	DSC-11T		No. of Credits		04
Contact Hours	60 (4 Hrs. per	week)	Duration of SE	A/Exam (Hrs.)	2 ¹ / ₂
Formative Assess	ment Marks	40	Summative Ass	sessment Marks	60

Course Outcomes (COs):

After the successful completion of the course, the student will be able to:

CO1. Understand the association of microbes in food and the quality testing of food

CO2. Understand the preservation and food safety protocols

CO3. Understand the methods of spoilage of food and the diseases associated with it

CO4. Learn the properties of milk and the types of preservation of milk.

CO5. Learn the types of fermented food and dairy products and its significance

Content of Course C. Theory Food Missokielers	CO 11-10	
Content of Course 6: Theory: Food Microbiology	60 Hrs.	
Unit 1: Production of food crops and their diseases	15 Hrs.	
Role of microbes in food crops production: Biofertilizers: Definition, Mass pro	oduction,	
mode of applications, advantages and limitations of Rhizobium, Azotobacter, Azo	spirillum,	
cyanobacterial fertilizers. Role of Frankia and VAM in soil fertility. Biopesticides: D	efinition,	
types- bacterial, viral and fungal-mode of action, factors influencing, target pests. I	Microbial	
herbicides.		
Diseases of food crops: Study of symptoms, etiology, epidemioloyg and manage	ement of	
diseases caused by fungi (Tikka disease of groundnut, blast disease of paddy, Re	ed rot of	
sugarcane), bacteria (Citrus canker, Bacterial blight of rice), viruses (Bean mosaid	c, Papaya	
ring spot) and viroid (Potato spindle tuber disease). Post-harvest diseases.		
Unit 2: Microbial quality of air and water for food processing and disposal of	15 Hrs.	
wastewater		
Bioaerosols in food: Air borne microbes and their impact on food. Bioaerosol s	sampling:	
Vertical clinder spore trap, Hirst spore trap, Rotorod sampler, Andersen sampler, i	mpingers	
and filtration. Control of bioaerosols- UV light, HEPA filters, desiccation, Incineration	on.	
Water quality in food safety: Water sample collection, methods to detect pot	ability of	
water samples: presumptive/MPN tests, confirmed and completed tests for	or faecal	
coliforms, SPC, IMViC reactions, membrane filter technique. Water borne pa	thogens,	
Control of water borne pathogens- Precipitation, filtration, chemical disinfection, U	V light.	
Disposal of wastewater in food industries: Microbiological characteristics of wastewater.		
Wastewater treatment- primary (screening, coagulation and sedimentation), secondary		
(trickling filter, oxidation pond) tertiary (reverse osmosis, ion exchange). Method	s of solid	
waste disposal (composting and biogas). BOD and COD.		
Unit 3: Food spoilage, Infection and Preservation	15 Hrs.	

Microbes and food: Food as a substrate for microorganisms- Intrinsic and extrinsic parameters affecting the growth of microbes. Spoilage: Sources of food contamination, Principles of food spoilage, Spoilage of meat and poultry, Fish and sea foods. Spoilage cereals, fruits and vegetables. Spoilage of canned food. Food borne infection and intoxication- Salmonellosis, Listeriosis, Botulism and Aflatoxicosis.

Food preservation: Principles of food Preservation. Methods of preservation-Physical (temperature, drying, irradiation, HPP), chemical (Class I and Class II). Bio preservation. Canning. Food Packaging-Types of packaging materials, properties and benefits. Food sanitation and control- Good Hygiene practices, GLP, GMP, HACCP, FSSAI, FDA and BIS in brief.

Unit 4: Microbiology of milk and fermented food products 15 Hrs.					
Dairy Microbiology: Composition of milk. Sources of contamination of milk. Bio	chemical				
changes of milk- souring, gassy fermentation, proteolysis, lipolysis,	ropiness.				
Microbiological analysis of milk- Rapid platform tests (COB, Phosphatase test, Di	MC), SPC				
and Reduction tests. Preservation of milk and milk products- Pasteurization, dehydration,					
sterilization. Packing of milk and dairy products. Starter culture- types and role.					
Fermented foods: Fermented milk (Cheese- types and production of Cheddar, Tofu,					
Yoghurt, Acidophilus milk), vegetable (sauerkraut, pickles) Meat (sausage) and	fish (fish				

Yoghurt, Acidophilus milk), vegetable (sauerkraut, pickles) Meat (sausage) and fish (fish sauce). Beverages-kombucha. Microbes as food- SCP, SCO. Prebiotics, Probiotics, Synbiotics and Neutrceuticals

Pedagogy:	Lectures,	Seminars,	Industry/Institute	Visits,	Debates,	Quiz,	Project	and
	Assignme	ents						

Formative As	Formative Assessment for Theory				
Assessment Occasion/ type	Marks				
Attendance	10				
Seminar	10				
Debate/Quiz/Assignment	10				
Class test	10				
Total	Total 40				
Formative Assessment a	Formative Assessment as per guidelines are compulsory				

Practical: Food Microbiology

Course Title	FOOD MICROBIOLOGY (Practical)			
Course Code	DSC-12P	DSC-12P No. of Credits 0		
Contact Hours	60 (4 Hrs. per session) Du		Duration of SEA/Exam (Hrs.)	03
Formative Asses	native Assessment Marks 25		Summative Assessment Marks	25

Practical Content

- 1. Isolation and characterization of *Rhizobium* spp. associated with root nodules.
- 2. Microscopic observation of diseased specimen of food crops: Citrus canker, Downy mildew of grapes, Tikka disease of groundnut and Potato spindle tuber disease
- 3. Determination of microbial contamination of air by passive sampling method.
- 4. Standard analysis of water samples and Determination of MPN.
- 5. Biochemical differentiation of Enterobacteriaceae isolates by IMViC reactions.
- 6. Determination of bacteriological quality of water by H_2S paper strip test.
- 7. Measurement of Biochemical Oygen Demand (BOD) of food processing wastewater.
- 8. Estimation of total solids of wastewater from food processing unit.
- 9. Isolation and identification of indegenous wine yeast and its use in alcohol fermentation
- 10. Determination of mesophilic aerobic count in foods and expression of count in logCFU/g
- 11. Turbidity index for the detection of efficiency of sterilization of milk.
- 12. Methylene blue and Resazurin reduction test for assessing the raw milk quality.
- 13. Laboratory scale production of yogurt and its sensory evaluation.
- 14. Culturing of *Spirulina* sp. as single cell protein.
- 15. Demonstation of air samplers, display of photographs of water purification process and wastewater treatment.

Note: Visit to agriculture research station, water/sewage treatment plant & food industry

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessme	Formative Assessment for Practical				
Assessment Occasion/ type	Marks				
Class Records	05				
Test	10				
Attendance	05				
Performance	05				
Total	25				
Formative Assessment as per g	Formative Assessment as per guidelines are compulsory				

- 1. Rangaswamy, G. and Bagyaraj, D. J. (2001), Agricultural Microbiology, 2nd ed. Prentice hall of India pvt.ltd., New Delhi.
- 2. Rao, M. N. and Datta , A. K. (1987). Waste Water Treatment. Oxford and I.B.H.
- 3. Rheinhermer, G. (1986). Aquatic Microbiology Jhon Wiely and sons, New york.
- 4. Subha Rao, N. S., 1988. Biofertilizers in Agricultural 2nd ed.Oxford and IBH Pub.Co., New Delhi.
- 5. Daniel Environmental Microbiology.
- 6. Grant, W. D. and P. E, Long: 1981 Environmental Microbiology, Thomson Litho ltd.
- 7. Mehrotra, R. S., Plant Pathalogy, Tata Mc Graw Hill Pubilications Limited, New Delhi.
- 8. Michael, J. Pelczar, Jr.E. C. S. Chan, Moel: Microbiology, Mc Graw Hill Book Company, New york).
- 9. Mitchell, R. (1992), Introduction to Environmental Microbiology, Prentice Hall Inc, Englewood Cliffs.
- 10. Adams, M. R. and Moss, M. O. (1995) Food Microbiology. Royal Society of Chemistry , Cambridge University Press.
- 11. Frazier & Westhoff, D. C. (1995) Food Microbiology Tata McGraw Hill Pub. Company Ltd., New Dehli.
- 12. Jay, J. M. (1985). Modern Food Microbiology.CBS Publishers and distributors, New Delhi.
- 13. Doyle M. P. and Beuchat L. R. (2007). Food Microbiology- Fundamentals. Frontiers, ASM Press.
- 14. Garbutt J. (1997). Essentials of Food Microbiology, Armold- International Students edition, London. 8. Marriott N. G. and Gravani R. B. (2006).
- 15. ThomasJ., Matthews, Karl; Kniel, Kalmia E (2017), Food Microbiology: An Introduction, AmericanSociety for (ASM).
- 16. Deak T. and Beuchat L. R. (1996). Hand Book of Food Spoilage Yeasts, CRC Press, New York.

B. Sc. Microbiology 5th Semester

Program name	B. Sc. in MICROBIOLOGY		Semester	V	
Course Title	MICROBIAL AND BIOCHEMICAL TECHNIQUES (Theory)				
Course Code	SEC-4T		No. of Credits		02
Contact Hours	30 (2 Hrs. per week)		Duration of SE	A/Exam (Hrs.)	02
Formative Assessment Marks		20	Summative Ass	sessment Marks	30

Course Outcomes (COs):

After the successful completion of the course, the student will be able to:

- CO1: Demonstrate skills in microbiological and analytical techniques.
- CO2: Understand principles which underlie sterilization of culture media, glassware and plastic ware to be used for microbiological work.
- CO3: Understand principles of a number of analytical instruments which the students have to use during the study and also later as microbiologists for performing various laboratory manipulations.
- CO4: Handle several separation techniques which may be required to be handled later as microbiologists.

Content of Course: Theory: Microbial and Biochemical Techniques	30 Hrs.		
Unit 1: Microbial Techniques	15 Hrs.		
Methods and practices of cleaning and management of lab: Learning and Pr	actice of		
Integrated clean-in-place (CIP) and sterilize-in-place (SIP) as per industry st	andards,		
Standard Operating Procedure (SOP) for various equipment in the QC Lab. Sterili	ty check,		
Bio-burden and Logbook maintenance.			
Handling and calibration of lab equipment- weighing balance, Micropipette Autoc	lave, Hot		
air Oven, Incubator, Centrifuge, Water bath, Colony Counter, and stability of	:hamber,		
Preparation of Normality, Molarity, and buffer solutions.			
Types of culture media and their maintenance: Preparation of various cultur	e media.		
Cultivation of Bacteria, Fungi, Actinomycetes and Algae. Isolation and preservation	n of pure		
culture. Morphological and biochemical characterization of bacteria.			
Unit 2: Biochemical Techniques	15 Hrs.		
Centrifugation: Principles of Centrifugation and Ultracentrifugation techniques	and its		
applications.			
Chromatography: Principle and techniques with applications (Partition, adsorp	Chromatography : Principle and techniques with applications (Partition, adsorption, ion		
exchange, exclusion and affinity chromatography). Electrophoretic technique (agarose and			
polyacrylamide gel) its components, working and applications.			
Spectrophotoscopy and Radiobiology: Principle, mechanism and application of inst	truments		
used in Spectrophotometric techniques (UV and visible). Radiobiological techniques	niaues –		

characters of radioisotopes, autoradiography, Radioisotope dilution technique and pulse chase experiments. Basic principles & Law of absorption and radiation and its application.

Practical: Microbial and Biochemical Techniques

Course Title	Mi	Microbial and Biochemical Techniques (Practical)			
Course Code	SEC-5P	SEC-5P No. of Credits		01	
Contact Hours	30 (2 Hrs. per session)		Duration of SEA/Exam (Hrs.)	03	
Formative Assessment Marks 2		25	Summative Assessment Marks	25	

Practical Content

- 1. Usage and maintenance of basic equipment of microbiology lab: Principles, calibrations, and SOPs of balances, pH meter, Autoclaves, Laminar flows, Biosafety cabinets, Microscopes, Homogenizers and Magnetic stirrers.
- 2. Cultivation of microorganisms: (i) Bacterial cultivation: (a) Streak-plate method (*E.coli, Staphylococcus aureus*) Streaking with inoculation loop. Streaking with toothpick. (b) Pour-plate method (*E.coli*).
- 3. Maintenance of microorganisms (slant culture, stab culture, glycerol stocks) (ii) Fungal cultivation (a) Yeast (*Saccharomyces cervisiae*) Moulds (*Penicillium notatum, Aspergillus niger*)
- 4. Estimation of CFU count by serial dilution- spread plate method/pour plate method.
- 5. Study of colony characteristics on nutrient agar
- 6. Biochemical characterization of bacteria:
 - a. Sugar utilization test (minimal medium + sugar)
 - b. Sugar fermentation test (peptone water method, Ammonium salt sugar method
 - c. IMViC reactions
 - d. Enzyme detection Amylase, Gelatinase, lipase, caseinase, Catalase, and Oxidase
 - e. Oxidative-fermentative test, arginine hydrolysis, ornithine, lysine decarboxylase, nitrate, nitrite reduction
- 7. Separation of mixtures by paper / thin layer chromatography.
- 8. Demonstration of column packing in any form of column chromatography.
- 9. Separation of protein mixtures by any form of chromatography.
- 10. Separation of protein mixtures by Polyacrylamide Gel Electrophoresis (PAGE).
- 11. Determination of absorption max for an unknown sample and calculation of extinction coefficient.
- 12. Separation of components of a given mixture using a laboratory scale centrifuge.

- 1. Michael Lufaso (2016). "Laboratory Skills for Science and Medicine: An Introduction". CRCPress.
- 2. Colin A. Ramsden (2014). "Analytical Molecular Biology". Oxford University Press.
- 3. John M. Walker and Ralph Rapley (2014). "Molecular Biomethods Handbook". HumanaPress.
- 4. Wilson and Walke, r(2000). Principles and Techniques in Practical Biochemistry. 5th Edition
- 5. Cambridge University Press.
- 6. Murphy, D. B. (2001). Fundamental of Light Microscopy & Electron Imaging.1st Edition. Wiley-Liss.
- 7. Murphy, D. B. (2001). Fundamental of Light Microscopy & Electron Imaging.1st Edition. Wiley-Liss.
- 8. Pranav Kumar, (2016). Fundamentals and Techniques of Biophysics and Molecular Biology
- 9. Aurora Blair. Laboratory Techniques & Experiments in Biology. Intelliz Press
- 10. Plummer, D. T. (1987). An Introduction to Practical Biochemistry. McGraw Hill Publication
- 11. Beckner, W. M., Kleinsmith, L. J. and Hardin, J. (2000). The world of cell. IV edition Benjamin/Cummings
- 12. Prescott, M. J., Harley, J. P. and Klein, D. A. (2002). Microbiology. 5th Edition WCB Mc GrawHill, New York,
- 13. Black J. G. (2002). Microbiology- Principlesand Explorations. JohnWiley & SonsInc. NewYork,
- 14. Maheswari, D. K. (2010). Practical Microbiology. S Chand publications
- 15. Cowan and Steel's Manual for the Identification of Medical Bacteria. G. I. Barrow (Editor), R. K. A. Feltham (Editor) 3rd Edition. 2004

B. Sc. Microbiology 6th Semester

Program name	B. Sc. in MICROBIOLOGY		Semester	VI	
Course Title	IMMUNOLOGY AND MEDICAL MICROBIOLOGY (Theory)				
Course Code	DSC-13T No. of Cr		No. of Credits		04
Contact Hours	60 (4 Hrs. per week) Duration of SE			A/Exam (Hrs.)	2 ¹ / ₂
Formative Assessment Marks 40		40	Summative Ass	sessment Marks	60

Course Outcomes (COs):

After the successful completion of the course, the student will be able to:

- CO1: Gain a preliminary understanding about various immune mechanisms.
- CO2: Familiarize with immunological techniques and sero-diagnosis of infectious diseases
- CO3: Understand pathogenic bacterial infections, symptoms, diagnosis and treatment

Content of Course 7: Immunology and Medical Microbiology	60 Hrs.				
Unit 1 : Introduction to Immune system	15 Hrs.				
Immune system: Historical perspective of immunology. Immunity-Definition and types.					
Cells and organs of immune system: B and T Lymphocytes, Natural killer (Cells and organs of immune system: B and T Lymphocytes, Natural killer (NK) cells,				
Granulocytes (Neutrophils, Eosinophils and Basophils), Monocytes and mac	rophages,				
Dendritic cells and Mast cells. Primary lymphoid organs-Bone marrow and	l Thymus.				
Secondary lymphoid organs-Spleen and Lymphnodes. Lymphoid tissues- MALT	and GALT.				
Antigen and Antibody: Antigen- Definition, properties and types. Immunoge	nicity and				
antigenicity, epitopes, haptens. Degree of foreignness, molecular weight, deg	radability.				
Adjuvants and their importance. Antibody: Definition, Basic structure of antibody,	, Structure				
and functions of different types of antibodies (IgG, IgA, IgM, IgD and IgE).	Antigenic				
determinants on immunoglobulins: Isotype, allotype and idiotype.					
Unit 2: Antigen-antibody interactions and Hypersensitive reactions	15 Hrs.				
Antigen-antibody reactions: Definition, salient features, antibody affinity and avi	dity, cross				
reaction. Agglutination reactions: Hemagglutination-blood grouping, Immunopre	cipitation:				
Radial (Mancini) and double (Ouchterlony) immunodiffusion and Immunoelectr	ophoresis.				
Complement mediated opsonization, complement fixation test. Immunotechniqu	ues: ELISA,				
Radioimmunoassay and Immunofluorescence.					
Hypersensitive reactions: Classification, antibody mediated hypersensitivity; Ty	vpe I (IgE),				
Type II (IgG and IgM-ADCC), Type III (Antigen-antibody complex), and Cell	mediated				
hypersensitivity Type IV (DTH). Autoimmne diseases and Transplantation Immu	unology in				
brief. Immunoprophylaxis-Vaccines-Types-Killed, Live attenuated and Toxoid	with an				
example each. National Immunization Schedule and Mission Indradhanush.					
Unit 3: Host-pathogen interaction and Medical Bacteriology	15 Hrs.				
Host pathogen interaction: Normal microflora of human skin, or	al cavity,				
gastrointestinal tract, urogenital tract and their importance. Host pathogen interaction:					
Definitions - Infection, Invasion, Pathogenicity, Virulence, Attenuation,	Exaltation,				

Toxigenicity, Carriers and their types. Infection-types of infection, modes of transmission of infection, portal of entry of pathogen. Sample collection, transport and diagnosis.

Medical Bacteriology: Symptoms, mode of transmission, prophylaxis and control of the following- respiratory diseases caused by *Streptococcus pyogenes*, *Haemophilus influenzae*, *Mycobacterium tuberculosis*. Gastrointestinal Diseases caused by: *Escherichia coli, Salmonella typhi, Vibrio cholerae*, Others: *Treponema pallidum, Staphylococcus aureus, Clostridium tetani*.

Unit 4: Medical Virology, Parasitology and Mycology and Chemotherapy15 Hrs.Medical Virology Parasitology and Mycology: Symptoms, mode of transmission,
prophylaxis and control of Polio, Hepatitis-B, Rabies, Dengue, AIDS, Corona and
Chikungunya. Malaria, Kala-azar, Amoebic dysentery. Fungal infections: Cutaneous
mycoses- Tinea infections, Systemic mycoses- Histoplasmosis and Opportunistic
mycoses- Candidiasis.

Antimicrobial agents: General characteristics and mode of action Antibacterial agents: Inhibitor of nucleic acid synthesis; Inhibitor of cell wall synthesis; Inhibitor of cell membrane function; Inhibitor of protein synthesis; Inhibitor of metabolism. Mechanism of action of antifungal agents: Amphotericin B, Griseofulvin; Antiviral agents: Acyclovir, Azidothymidine. Antibiotic resistance, MDR,XDR, MRSA, NDM-1

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessm	Formative Assessment for Theory				
Assessment Occasion/ type	Marks				
Attendance	10				
Seminar	10				
Debate/Quiz/Assignment	10				
Class test	10				
Total	40				
Formative Assessment as per	Formative Assessment as per guidelines are compulsory				

Practical: Immunology and Medical Microbiology

Course Title	IMMUNOLOGY AND MEDICAL MICROBIOLOGY (Practical)			
Course Code	DSC-14P	DSC-14P No. of Credits		02
Contact Hours	60 (4 Hrs. per session)		Duration of SEA/Exam (Hrs.)	03
Formative Assessment Marks 25		Summative Assessment Marks	25	

Practical Content

- 1. Identification of human blood groups.
- 2. Perform WBC of the given blood sample using haemocytometer.
- 3. Perform Differential Leukocyte Count of the given blood sample.
- 4. Demonstration: separate serum from the blood sample.
- 5. Perform immunodiffusion by Ouchterlony method.
- 6. Demonsatration of Single Radial Immuno Diffusion.
- 7. Widal test / HCG test
- 8. RPR test / VDRL test.
- 9. Study of composition and use of important differential media for identification of pathogenic bacteria: EMB Agar, MacConkey agar, Mannitol salt agar, Deoxycholate citrate agar, TCBS agar.
- 10. Study of bacterial flora of skin by swab method
- 11. Identify bacteria (*E. coli, Bacillus*) using laboratory strains on the basis of cultural, morphological and biochemical characteristics: IMViC, TSI, nitrate reduction, urease production and catalase tests
- 12. Cultural, morphological and biochemical characteristics of *Staphylococcus*.
- 13. Study of various stages of Malarial parasite in RBCs using permanent mounts
- 14. Perform antibiotic sensitivity by Kirby-Bauer method
- 15. Study symptoms of the diseases with the help of photographs: Polio, Rabies, Chikungunya, AIDS, Histoplasmosis, Candidiasis and Athlete's foot.

Note: Visit to pharmaceutical and pathology laboratory (Optional).

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessmer	Formative Assessment for Practical			
Assessment Occasion/ type	Marks			
Class Records	05			
Test	10			
Attendance	05			
Performance	05			
Total	25			
Formative Assessment as per guidelines are compulsory				

- 1. Ananthanarayan, R. and Paniker C. K. J. (2009). Textbook of Microbiology, 8th Edition, University Press, Publication.
- 2. Brooks, G. F., Carroll, K. C., Butel, J. S., Morse, S. A. and Mietzner, T. A. (2013). Jawetz, Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication
- 3. Goering, R., Dockrell, H., Zuckerman, M. and Wakelin, D. (2007). Mims' Medical Microbiology. 4th edition. Elsevier
- 4. Willey, J. M., Sherwood, L. M., and Woolverton, C. J. (2013) Prescott, Harley and Klein's Microbiology.9th edition. McGraw Hill Higher Education
- 5. Madigan, M. T., Martinko, J. M., Dunlap, P. V. and Clark, D. P. (2014). Brock Biology of Microorganisms.14thedition. Pearson International Edition
- 6. Delves, P., Martin, S., Burton, D., Roitt, I. M. (2006). Roitt's Essential Immunology.11th edition Wiley-Blackwell Scientific Publication, Oxford.
- 7. Goldsby, R. A., Kindt, T. J., Osborne, B. A. (2007). Kuby's Immunology. 6th edition W. H. Freeman andCompany, New York.
- 8. Murphy, K., Travers, P., Walport, M. (2008). Janeway's Immunobiology. 7th edition Garland Science, Publishers, New York.
- 9. Peakman, M. and Vergani, D. (2009). Basic and Clinical Immunology, 2nd edition Churchill, Livingstone Publishers, Edinberg.
- 10. Richard, C. and Geiffrey, S. (2009). Immunology. 6th edition. Wiley Blackwell Publication.

B. Sc. Microbiology 6th Semester

Program name	B. Sc. in MICROBIOLOGY		Semester	VI	
Course Title	INDUSTRIAL MICROBIOLOGY (Theory)				
Course Code	DSC-15T		No. of Credits		04
Contact Hours	60 (4 Hrs. per w	veek)	Duration of SE	A/Exam (Hrs.)	2 ¹ / ₂
Formative Assessment Marks 40		Summative Assessment Marks		60	

Course Outcomes (COs):

After the successful completion of the course, the student will be able to:

CO1. Learn the overview of scope and importance of industrially important microbes.

CO2. Acquaint with different types of fermentation processes and equipment.

CO3. Acquire the knowledge of purification of value-added products.

CO4. Acquire knowledge on the concepts and terminology in genetic engineering.

CO5. Learn about principles involved in manipulating genes and DNA.

CO6. Familiar with various techniques used in genetic engineering.

Content of Course 8: Industrial Microbiology and Genetic Engineering	60 Hrs.	
Unit 1: Introduction to Industrial Microbiology	15 Hrs.	
Introduction to Industrial Microbiology: Scope and concepts. Microorganisms of	industrial	
importance: Selection criteria, Strain improvement and Preservation. Fermento	r: Design	
and components of a bioreactor. Specialized bioreactors: Airlift bioreactors, fluic	lized bed	
reactor, packed bed reactors, Photo-bioreactors and membrane bioreactors. Steril	ization of	
fermentor. Control of air, temperature and pH. Aseptic inoculation and sampling methods.		
Fermentation media and process: Strategies for media formulation, Natural and	synthetic	
media. Production medium and Inoculum medium. Raw materials (Molasses and	its types,	
corn steep liquor, sulphite waste liquor and whey). Buffers, Precursors, Inhibi	tors and	
Antifoam agents. Types of fermentation process: Submerged fermentation, So	olid state	
fermentation (Koji), Batch fermentation and continuous fermentation.		
Unit 2: Downstream processing, General production strategies of microbial	15 Hrs.	
products and Enzyme immobilization		

Downstream processing- Definition, Stages in downstream processing. Methods of downstream processing: Precipitation, filtration, centrifugation, distillation, cell disruption, solvent recovery, drying and crystallization.

Microbial production of industrial products: Industrial production and uses of Ethyl alcool, wine, Penicillin, Lactic acid, Citric acid, Amylase. Oyster mushroom cultivation.

Enzyme immobilization: Immobilized enzymes, Revesible immobilization- Adsorption, Irrevesible immobilization- covalent coupling, entrapment, copolymerization. Applications of enzyme immobilization, Advantages and disadvantages of immobilized enzymes.

Unit 3: Genetic Engineering tools used in Strain improvement of microbes of 15 Hrs. industrial importance **Introduction to genetic engineering**: Definition, milestones in genetic engineering. Tools in genetic engineering: Restriction enzymes- Types, Mode of action, nomenclature, applications. DNA modifying enzymes and their applications: DNA polymerases, Methylases, Terminal deoxynucleotidyl transferase, Kinases, Phosphatases and Ligases.

Cloning Vectors and Cloning host: Cloning Vectors- Definition and Properties. Characteristics of cloning vectors. Plasmid vectors: pBR and pUC series. Bacteriophage lambda, Cosmids, BACs, YACs. Use of linkers and adaptors. Expression vectors: Baculovirus based vectors, mammalian SV40-based expression vectors. Cloning host- Cloning in *Escherichia coli* and *Saccharomyces cerevisiae*.

Unit 4: Genetic engineering techniques in industrial production of recombinant 15 Hrs. products

Techniques in genetic engineering: Isolation of DNA, restriction digestion and ligation of DNA, Agarose gel electrophoresis, Blotting techniques, DNA sequencing- Sanger's method. PCR techniques and applications. DNA transfer methods: Microinjection, Biolistic, Electroporation, Calcium phosphate mediated DNA transfer. Identification and selection of recombinants: DNA hybridisation, blue white selection, colony and plaque hybridization.

Industrial production of recombinant products: Products of human therapeutic interest insulin, hGH, antisense molecules. Bt Cotton, Bt Brinjal. Gene therapy, recombinant vaccines. Biological, ethical and social issues of gene cloning and IPR. Gene Library: Construction and application of cDNA and genomic libraries. Application of recombinant microorganisms in basic research, industry, medicine, agriculture, environment.

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessment for Theory			
Assessment Occasion/ type	Marks		
Attendance	10		
Seminar	10		
Debate/Quiz/Assignment	10		
Class test	10		
Total	40		
Formative Assessment as per guidelines are compulsory			

Practical: Industrial Microbiology

Course Title	INDUSTRIAL MICROBIOLOGY (Practical)			
Course Code	DSC-16P		No. of Credits	02
Contact Hours	60 (4 Hrs. per session)		Duration of SEA/Exam (Hrs.)	03
Formative Asses	sment Marks	25	Summative Assessment Marks	25

Practical Content

- 1. Preparation of natural and synthetic media used in industry.
- 2. Production of amylase by solid substrate fermentation.
- 3. Preservation of industrial important microbes with glycerol/soil.
- 4. Preparaion of wine from grapes.
- 5. Preparation of alcohol using jaggery/molasses.
- 6. Estimation of citric acid produced from Aspergillus niger by titrimetric method
- 7. Estimation of % alcohol in a given sample by specific gravity bottle method
- 8. Cultivation and processing of edible Mushroom.
- 9. Preparation of buffers-TE, TAE and Lysis buffer.
- 10. Isolation of plasmid DNA from Escherichia coli.
- 11. Digestion of DNA with restriction enzymes.
- 12. Demonstration of amplification of DNA by PCR.
- 13. Demonstration of Southern blotting.
- 14. Demonstration of cloning of DNA inserts and Blue white screening of recombinants.
- 15. Study of specialized bioreactors, Microbial production of industrial products, Cloning vectors, Techniques in genetic engineering and recombinant products as per theory.

Note: Visit to to distilleries and molecular biology laboratory.

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical		
Assessment Occasion/ type	Marks	
Class Records	05	
Test	10	
Attendance	05	
Performance	05	
Total	25	
Formative Assessment as per guidelines are compulsory		

- 1. Arindam Kuila and Vinay Sharma (2018). Principles and Applications of Fermentation Technology, Wiley.
- 2. Casida, L. (2016). Industrial Microbiology, 2nd edition, New Age International Publisher.
- 3. Crueger, W. and A Crueger. (2017). Cruegers Biotechnology: A Text Book of Industrial Microbiology.Edited by K.R. Aneja. Panima Publishing Corporation.
- 4. Michael, J. W., Neil, L. Morgan. (2013). Industrial Microbiology: an Introduction. Blackwell science
- 5. Nduka Okafor and Benedict Okeke (2017). Modern Industrial Microbiology and Biotechnology. 2ndEdition :CRC Press Publishers
- 6. Stanbury P. F., W. Whitaker and S. J. Hall (2016). Principles of Fermentation Technology. 3rd edition. Elsevierpublication
- 7. Alexander, N. Glazer, Hiroshi Nikaido (2014). Microbial Biotechnology: Fundamental of appliedMicrobiology, 2nd Edition, Cambridge University Press
- 8. Brown, T. A. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 9. Clark, D. P. and Pazdernik, N. J. (2009). Biotechnology: Applying the Genetic Revolution. ElsevierAcademic Press, USA
- 10. Krebs, J., Goldstein, E., Kilpatrick, S. (2013). Lewin's Essential Genes, 3rd Ed., Jones and Bartlett Learning
- 11. Primrose, S. B. and Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics, 7thedition. Blackwell Publishing, Oxford, U.K.
- 12. Primrose, S. B. and Twyman, R. M. (2008). Genomics: Applications in human biology. BlackwellPublishing, Oxford, U.K.
- 13. Russell, P. J. (2009). Genetics- A Molecular Approach. 3rd Ed, Benjamin Cummings
- 14. Sambrook, J. and Russell, D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold SpringHarbor Laboratory Press
- 15. Sambrook, J. and Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual. 4th Edition, Cold Spring HarbourLaboratory press.
- 16. Watson, J. D., Baker, T. A., Bell, S. P. et al. (2008). Molecular Biology of the Gene, 6th Ed., Benjamin Cummings Wiley
- 17. Sherwood, L. M. and Woolverton, C. J. (2008). Prescott, Harley and Klein's Microbiology. McGraw Hill HigherEducation.

B. Sc. Microbiology 6th Semester

Internship for Graduate Programme

Course title	Internship Discipline specific
No of contact hours	90
No of credits	2
Method of evaluation	Presentations/Report submission/Both

Project Assessment					
Formative Assessment		Summative Assessment	Total Marks		
Assessment	Weightage in	Practical Exams			
Occasion/Type	Marks				
Data maintenance	10	Presentation/Report/Both			
Assessment	10	25	50		
Attendance	05				
Total	25	25			

- Internship shall be Discipline Specific of 90 hours (2 credits) with duration 4-6 weeks.
- Internship may be full-time/part-time (full-time during semester holidays and part-time in the academic session)
- Internship mentor/supervisor shall avail work allotment during 6th semester for a maximum of 20 hours.
- The student should submit the final internship report (90 hours of Internship) to the mentor for completion of the internship.
- The detailed guidelines and formats shall be formulated by the universities separately as prescribed in accordance to UGC and AICTE guidelines.